Exam 1

  1. Metainformation

    Tag Value
    fileInferential_Statistics_vufgb-posthoctest-004-en_vufgb-posthoctest-004-en
    namevufgb-posthoctest-004-en
    sectionInferential Statistics/Parametric Techniques/ANOVA/Post-hoc test, Inferential Statistics/Parametric Techniques/ANOVA/Oneway ANOVA
    typeschoice
    solutionFALSE, FALSE, FALSE, TRUE
    TypeCalculation
    Program
    LanguageEnglish
    LevelStatistical Literacy

    Question

    A one-way ANOVA compares the mean values of four groups.

    Calculate the right-hand crossing probability required to construct the Bonferroni intervals for all possible pairs of averages.


    1. FALSE: 0.0125
    2. FALSE: 0.00833
    3. FALSE: 0.00625
    4. TRUE: 0.00417

    Solution

    The number of groups is 4. The number of possible pairs is then (g1)×2=3×2=6(g-1) \times 2 = 3 \times 2 = 6.

    The Bonferroni corrected alpha level is then 0.056\frac{0.05}{6}.

    The right-hand crossing probability is half of that, so 0.05(6×2)=0.0512=0.00417\frac{0.05}{(6 \times 2)} = \frac{0.05}{12} = 0.00417.


    1. Incorrect
    2. Incorrect
    3. Incorrect
    4. Correct